SOLUTION TOPIC: LIMITS, CONTINUITY & DIFFERENTIABILITY

41. (A)

$$\lim_{x \to \frac{\pi}{2}} \left[\frac{[\sin x] - [\cos x] + 1}{3} \right] = \left[\frac{0 - (-1) + 1}{3} \right] = 0$$

$$\lim_{x \to \frac{\pi}{2}} \left[\frac{[\sin x] - [\cos x] + 1}{3} \right] = \left[\frac{0 - 0 + 1}{3} \right] = 0$$

$$\therefore \lim_{x \to \frac{\pi}{2}} \left[\frac{[\sin x] - [\cos x] + 1}{3} \right] = 0$$

42. (B)

$$\lim_{x \to \infty} \left(e^x + \pi^x \right)^{\frac{1}{x}} = \lim_{x \to \infty} \left(\left(\frac{e}{\pi} \right)^x + 1 \right)^{1/x} = \pi$$

Now, $\{\pi\} = \pi - 3$
$$\therefore \lim_{x \to \infty} \left\{ \left(e^x + \pi^x \right)^{\frac{1}{x}} \right\} = \pi - 3$$

43. (D)

$$\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{1 - \sqrt{\sin 2x}}}{\pi - 4x} \times \frac{\sqrt{1 + \sqrt{\sin 2x}}}{\sqrt{1 + \sqrt{\sin 2x}}}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{1 - \sin 2x}}{(\pi - 4x)} \times \lim_{x \to \frac{\pi}{4}} \frac{1}{\sqrt{1 + \sqrt{\sin 2x}}}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\sin^2\left(\frac{\pi}{4} - x\right)}}{(\pi - 4x)} \cdot 1$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{\left|\sin^2\left(\frac{\pi}{4} - x\right)\right|}{4\left(\frac{\pi}{4} - x\right)}$$

Which gives $RHL = -\frac{1}{4}$ at $x = \frac{\pi}{4}$ and $LHL = \frac{1}{4}$ at $x = \frac{\pi}{4}$ so, limit does not exist

44. (C)

45. (B)

$$f(x) = \begin{cases} \frac{2\cos x - \sin 2x}{(\pi - 2x)^2}, & x \le \frac{\pi}{2} \\ \frac{e^{-\cos x} - 1}{8x - 4\pi}, & x > \frac{\pi}{2} \end{cases}$$

L.H.L. at $x = \frac{\pi}{2}$
$$\lim_{h \to 0} \frac{2\sin h - \sin 2h}{4h^2} = \lim_{h \to 0} \frac{2\sin h (1 - \cos h)}{4h^2} = 0$$

R.H.L. $= \lim_{h \to 0} \frac{e^{\sinh h} - 1}{8\left(\left(\frac{\pi}{2}\right) + h\right) - 4\pi}$
 $= \lim_{h \to 0} \frac{e^{\sinh h} - 1}{8h} \cdot \frac{\sinh h}{\sinh h} = \frac{1}{8}$

 \Rightarrow h(x) has irremovable discontinuity at x = $\frac{\pi}{2}$

46. (A, C, D)

$$\forall 1 < x < \frac{\pi}{2}, \tan^{-1} \tan x = x$$

And $x = 0 < \log_e x < \log_e \frac{\pi}{2} < 1$
$$\Rightarrow f(x) = x$$

$$\forall \frac{\pi}{2} < x < e, \tan^{-1} \tan x = x - \pi$$

And $0 < \log_e x < 1$
$$\therefore (\log_e x)^n = 0$$

$$\Rightarrow f(x) = x - \pi$$

And for $x > e$, $\log_e x > 1$, $\therefore (\log_e x)^n$
$$\Rightarrow f(x) = 0$$

47. (**B**, **C**, **D**)

- (A) Clearly f(x) is continuous at x = 1
- (B) $g(1^+)=0, g(1)=1 \Rightarrow g(x)$ is discontinuous at x = 1
- (C) $h(1^+)=1$ and $h(1^-)=0 \Longrightarrow h(x)$ is discontinuous at x=1

 $\rightarrow \infty$

(D) $\phi(1^+) = 1$ and $\phi(1^-) = -1 \Rightarrow \phi(x)$ is discontinuous at x = 1

$$\lim_{h \to 0} f(0+h) = \lim_{h \to 0} \left(1 + \frac{ah + bh^3}{h^2}\right)^{1/t}$$
$$= \lim_{h \to 0} e^{\frac{1}{h} \ln \left(1 + \frac{ah + bh^3}{h^2}\right)}$$

For limit to exist, we must have

$$\lim_{h\to 0} \frac{ah+bh^3}{h^2} = 0$$

$$\therefore a = 0$$

So, we have

$$\lim_{h \to 0} f(0+h) = \lim_{h \to 0} (1+bh)^{1/h}$$
$$= \lim_{h \to 0} (1+bh)^{(1/bh)^{b}} = e^{b}$$

For f(x) to be continuous at x = 0, we must have

$$\lim_{x \to 0^{+}} f(x) = f(0)$$
$$\Rightarrow e^{b} = 3$$
$$\therefore b = \log_{e} 3$$

49. (**B**, **D**)

$$\lim_{x \to 0^+} \left(3 - \left[\cot^{-1} \left(\frac{2x^3 - 3}{x^2} \right) \right] \right) = 3 - \left[\cot^{-1} \left(-\infty \right) \right] = 0$$
$$\lim_{x \to 0^+} \left\{ x^2 \right\} \cos \left(e^{1/x} \right) = 0 \times (\text{value between } -1 \text{ and } 1)$$
$$= 0$$

50. (A, B, C, D)

$$f(1^{+}) = \lim_{x \to 1^{+}} \left(x \left[\frac{1}{x} \right] + x \left[x \right] \right)$$
$$= \lim_{x \to 1^{+}} \left(x(0) + x(1) \right)$$
$$= 1$$
$$f(1^{-}) = \lim_{x \to 1^{-}} \left(x \left[\frac{1}{x} \right] + x \left[x \right] \right)$$
$$= \lim_{x \to 1^{-}} \left(x(1) + x(0) \right)$$
$$= 1$$

$$f(2^{+}) = \lim_{x \to 2^{+}} \left(x \left[\frac{1}{x} \right] + x \left[x \right] \right)$$
$$= \lim_{x \to 2^{+}} \left(x(0) + x(2) \right)$$
$$= 4$$
$$f(2^{-}) = \lim_{x \to 2^{-}} \left(x \left[\frac{1}{x} \right] + x \left[x \right] \right)$$
$$= \lim_{x \to 2^{-}} \left(x(0) + x(1) \right)$$
$$= 2$$

Obviously f(x) is discontinuous at all positive integers but at x = 1 it has removable discontinuity

51. (A,B,)

$$\lim_{x \to 0^{+}} x \left(\frac{e^{|x| + [x]} - 2}{|x| + [x]} \right)$$

=
$$\lim_{x \to 0^{+}} x \left(\frac{e^{x+0} - 2}{x+0} \right)$$

=
$$\lim_{x \to 0^{+}} x \left(e^{x} - 2 \right)$$

=
$$1 - 2 = 0$$

=
$$\lim_{x \to 0^{-}} x \left(\frac{e^{|x| + [x]} - 2}{|x| + [x]} \right)$$

=
$$\lim_{x \to 0^{-}} x \left(\frac{e^{-x-a} - 2}{-x-1} \right) = 0$$

52. (C)

$$f(x) = x^{1/3} (x-2)^{2/3}$$

$$\therefore f'(x) = x^{1/3} \cdot \frac{2}{3} (x-2)^{-1/3} + (x-2)^{2/3} \cdot \frac{1}{3} x^{-2/3}$$

$$= \frac{1}{3} x^{-2/3} (x-2)^{-1/3} (3x-2)$$

$$\therefore f' \text{ is not defined at } x = 0 \text{ and at } x = 2$$

- **53.** (**B**)
- 54. (B,C)
- 55. (A,C)
- 56. (zero)

57.	(1)
58.	(1)
59.	(4)

60. (5)